Uniform Convergence of Godunov Schemes on Moving Meshes for Dynamical Boundary Layers
نویسنده
چکیده
In this paper, a Godunov scheme on moving meshes, is studied for a kind of timedependent convection-dominated equations with dynamical boundary layers. The rate of convergence in pointwise norm, which is uniform to the small diffusion parameter 2, O(N−1 +τ), is proved, where N is the number of spatial unknowns and τ the mesh size of temporal meshes. This paper is a successful try on the convergence of the moving mesh methods for time-dependent problems.
منابع مشابه
High-order Methods for Semilinear Singularly Perturbed Boundary Value Problems
We considered finite difference methods of higher order for semilinear singularly perturbed boundary value problems, consisted of constructing difference schemes on nonuniform meshes. Construction of schemes is presented and convergence uniform in perturbation parameter for one method is shown on Bakhvalov’s type of mesh. Numerical experiments demonstrated influence of different meshes on devel...
متن کاملThe Convergence Rate of Godunov Type Schemes
Godunov type schemes form a special class of transport projection methods for the approximate solution of nonlinear hyperbolic conservation laws. We study the convergence rate of such schemes in the context of scalar conservation laws. We show how the question of consistency for Godunov type schemes can be answered solely in terms of the behavior of the associated projection operator. Namely, w...
متن کاملInvestigation of Dynamical Behavior (Transverse Vibration) and Instability Analysis of Carbon Nanotubes Conveying Nanofluid
This work focuses on the dynamical behavior of carbon nanotubes, including vibration, wave propagation and fluid-structure interaction. In the present research, transverse vibration of nano fluid conveying carbon nanotubes is investigated. To this end, based on the nonlocal and strain-inertia gradient continuum elasticity theories and by using rod and Euler-Bernoulli beam models, the system’s d...
متن کاملBoundary Layers in Weak Solutionstohyperbolic Conservation
This paper studies the boundary layers that generally arise in approximations of the entropy discontinuous solutions to the initial-boundary value problem associated with a nonlinear hyperbolic system of conservation laws. We consider the vanishing viscosity method and several nite diierence schemes (Lax-Friedrichs type schemes, Godunov scheme). Assuming solely uniform L 1 bounds and for entrop...
متن کاملBoundary Layers in Weak Solutions to Hyperbolic Conservation Laws
This paper studies the boundary layers that generally arise in approximations of the entropy discontinuous solutions to the initial-boundary value problem associated with a nonlinear hyperbolic system of conservation laws. We consider the vanishing viscosity method and several nite di erence schemes (Lax-Friedrichs type schemes, Godunov scheme). Assuming solely uniform L1 bounds and for entropy...
متن کامل